pyeemd Documentation
Release 1.3

Perttu Luukko

September 19, 2016

Contents

1 Contents: 1
1.1 Installing pyeemd L e e e 1
1.2 Tutorial e e e e e e e e 1
1.3 APIdocumentation vt i i e e e e e e e e e e e e e e e e 3
2 Indices and tables 7
Bibliography 9
Python Module Index 11
Python Module Index 13

CHAPTER 1

Contents:

1.1 Installing pyeemd

The pyeemd module comes with a regular Python distutils installation script, so installing it should be quite straight-
forward. The only catch is that you need to first compile 1ibeemd. so, since pyeemd is only a wrapper for that
library. Please see the README file distributed with libeemd on more details on how to compile libeemd, but if you are
unpatient and already have the necessary dependencies installed (GCC, GSL), you can just run make in the top-level
directory of libeemd and you are done.

To install pyeemd please run:

python2 setup.py install

In the top-level directory of pyeemd (the one with setup.py).

If you want to specify an alternative installation prefix, you can do it as follows:

‘pythonZ setup.py install —--prefix=$HOME/usr

1.2 Tutorial

After installing pyeemd as described in Installing pyeemd you are all set to using it with:

’import pyeemd

The three main decomposition routines implemented in pyeemd — EMD, EEMD and CEEMDAN - are available as
emd (), eemd () and ceemdan (), respectively. All these methods use similar conventions so interchanging one for
another is easy.

Input data to these routines can be any kind of Python sequence that numpy can convert to an 1D array of floating
point values. The output data will be a 2D numpy array, where each row of the array represents a single intrinsic
mode function (IMF).

As an example, the examples subfolder of pyeemd contains a file ecg . csv, which contains ECG (electrocardiogram)
data from the MIT-BIH Normal Sinus Rhythm Database. The data is in CSV (comma separated value) format, which
can be read into Python in many ways, one of which is using numpy . loadtxt () using the appropriate delimiter:

from numpy import loadtxt

ecg = loadtxt ("ecg.csv", delimiter=',")

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://www.physionet.org/cgi-bin/atm/ATM
http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html#numpy.loadtxt

pyeemd Documentation, Release 1.3

Now we have the data in a numpy array ecg. We can quickly plot what the data looks like using
matplotlib.pyplot.

600 Original 5lglnal

500 1

400} 1

300 1

200

100}]

=100} 1

-200

0 200 200 600 800 1000 1200 1400

Fig. 1.1: Original ECG signal as plotted by matplotlib.pyplot.

from matplotlib.pyplot import plot, show, title

title("Original signal")
plot (ecqg)
show ()

The data stored in ecg can be decomposed with CEEMDAN using the routine ceemdan (). The only thing we need
to decide is what to use as the stopping criterion for the sifting iterations. In this example we use a S-number of 4 and
a maximum number of siftings of 50:

from pyeemd import ceemdan

imfs = ceemdan (ecg, S_number=4, num_siftings=50)

Now the rows of the 2D array imfs are the IMFs the original signal decomposes to when applying CEEMDAN.
We can plot these IMFs using matplotlib.pyplot as before, but pyeemd also comes with an utility function
plot_imfs () for easily plotting the IMFs (using matplotlib.pyplot) in separate figures.

from pyeemd.utils import plot_imfs

plot_imfs (imfs, plot_splines=False)
show ()

The plot_splines=False argument prevents the plotting of the envelope curves of the IMFs, which would
otherwise be shown.

This concludes our simple tutorial. For more in-depth information about the methods available in pyeemd please
head to the API documentation. You can also look at example code at the examples subdirectory of pyeemd.

2 Chapter 1. Contents:

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot
http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot
http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot
http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot

pyeemd Documentation, Release 1.3

a0 . IMF #7 .

i

20

|
]
=]
I
1

0 200 400 600 800 1000 1200 1400

Fig. 1.2: IMF 7 extracted from ECG data with ceemdan () and plotted with plot_imfs ().

How you choose to use or process the IMFs obtained by the decomposition routines is beyond the scope of this
document — and beyond the scope of pyeemd — but you might be interested in the Hilbert transform routine offered by
scipy.fftpack.hilbert ().

1.3 APl documentation

1.3.1 Main decomposition routines

pyveemd.eemd (inp, num_imfs=None, ensemble_size=250, noise_strength=0.2, S_number=None,

num_siftings=None, rng_seed=0)
Decompose input data array inp to Intrinsic Mode Functions (IMFs) with the Ensemble Empirical Mode De-
composition algorithm /R/].

The size of the ensemble and the relative magnitude of the added noise are given by parameters ensemble_size
and noise_strength, respectively. The stopping criterion for the decomposition is given by either a S-number
or an absolute number of siftings. In the case that both are positive numbers, the sifting ends when either of
the conditions is fulfilled. By default, num_siftings=50 and S_number=4. If only S_number is set to a positive
value, num_siftings defaults to 50. If only num_siftings is set to a positive value, S_number defaults to 0.

Parameters inp : array_like, shape (N,)
The input signal to decompose. Has to be a one-dimensional array-like object.
num_imfs : int, optional

Number of IMFs to extract. If set to None, a default value given by emd_num_imfs(N) is
used. Note that the residual is also counted in this number, so num_imfs=1 will simply
give you the input signal plus noise.

1.3.

API documentation 3

http://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.hilbert.html#scipy.fftpack.hilbert

pyeemd Documentation, Release 1.3

ensemble_size : int, optional
Number of copies of the input signal to use as the ensemble.
noise_strength : float, optional

Standard deviation of the Gaussian random numbers used as additional noise. This
value is relative to the standard deviation of the input signal.

S_number : int, optional

Use the S-number stopping criterion /R2] for the EMD procedure with the given values
of S. That is, iterate until the number of extrema and zero crossings in the signal differ
at most by one, and stay the same for S consecutive iterations. Typical values are in the
range 3 .. 8. If S_number is zero, this stopping criterion is ignored.

num_siftings : int, optional

Use a maximum number of siftings as a stopping criterion. If num_siftings is zero, this
stopping criterion is ignored.

rng_seed : int, optional

A seed for the random number generator. A value of zero denotes an implementation-
defined default value.

Returns imfs : ndarray, shape (M, N)

A MxN array with M = num_imfs. The rows of the array are the IMFs of the input
signal, with the last row being the final residual.

See also:

emd The regular Empirical Mode Decomposition routine.

emd_num_imfs The number of IMFs returned for a given input length N unless a specific number is set by
num_imfs.

Notes

At least one of S_number and num_siftings must be positive. If both are positive, the iteration stops when either
of the criteria is fulfilled.

References

[RI1], [R2]

pyeend.emd (inp, num_imfs=None, S_number=None, num_siftings=None)
A convenience function for performing EMD (not EEMD). This simply calls function eemd () with
ensemble_size=1 and noise_strength=0.

pyeemd.ceemdan (inp, num_imfs=None, ensemble_size=250, noise_strength=0.2, S_number=None,
num_siftings=None, rng_seed=0)
Decompose input data array inp to Intrinsic Mode Functions (IMFs) with the Complete Ensemble Empirical
Mode Decomposition with Adaptive Noise (CEEMDAN) algorithm /R3], a variant of EEMD. For description

of the input parameters and output, please see documentation of eemd ().

See also:

eemd The regular Ensemble Empirical Mode Decomposition routine.

4 Chapter 1. Contents:

pyeemd Documentation, Release 1.3

emd_num_imfs The number of IMFs returned for a given input length.

References

[R3]

1.3.2 Auxiliary routines

pyeemd.emd_num_imfs (N)
Return number of IMFs that will be extracted from input data of length N, including the final residual.

pyeemd.emd_find_extrema (x)
Find the local minima and maxima from input data x. This includes the artificial extrema added to the ends of

the data as specified in the original EEMD article [R4].
Parameters x : array_like, shape (N,)
The input data. Has to be a one-dimensional array_like object.
Returns maxx : ndarray
The x-coordinates of the local maxima.
maxy : ndarray
The y-coordinates of the local maxima.
minx : ndarray
The x-coordinates of the local minima.
miny : ndarray

The y-coordinates of the local minima.

References

[R4]

pyeemd.emd evaluate_spline (x,Yy)
Evaluates a cubic spline with the given (x, y) points as knots.

Parameters x : array_like, shape (N,)

The x coordinates of the knots. The array must be sorted, start from 0 and end at an

integer.
y : array_like, shape (N,)
The y coordinates of the knots.

Returns spline_y : ndarray

The cubic spline curve defined by the knots and the “not-a-knot” end conditions, evalu-
ated at integer points from 0 to max (x) .

See also:

emd_find extrema A method of finding the extrema for spline fitting.

1.3. APl documentation

pyeemd Documentation, Release 1.3

Notes

As you can see from the definition, this method is tuned to work only in the case needed by EMD. This method
is made available mainly for visualization and unit testing purposes. Better general purpose spline methods exist
already in scipy.interpolate.

1.3.3 Utility code: pyeemd.utils

Some utility functions for visualizing IMFs produced by the (E)EMD methods.

utils.plot_imfs (imfs, new_figs=True, plot_splines=True)
Plot utility method for plotting IMFs and their envelope splines with pylab.

Parameters imfs : ndarray

The IMFs as returned by pyeemd.emd(), pyeemd.eemd (), or
pyeemd.ceemdan ().

new_figs : bool, optional
Whether to plot the IMFs in separate figures.
plot_splines : bool, optional

Whether to plot the envelope spline curves as well.

6 Chapter 1. Contents:

http://docs.scipy.org/doc/scipy/reference/interpolate.html#module-scipy.interpolate

CHAPTER 2

Indices and tables

¢ genindex
* modindex

e search

pyeemd Documentation, Release 1.3

8 Chapter 2. Indices and tables

Bibliography

[R1] Z. Wu and N. Huang, “Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method”,
Advances in Adaptive Data Analysis, Vol. 1 (2009) 1-41

[R2] N. E. Huang, Z. Shen and S. R. Long, “A new view of nonlinear water waves: The Hilbert spectrum”, Annual
Review of Fluid Mechanics, Vol. 31 (1999) 417-457

[R3] M. Torres et al, “A Complete Ensemble Empirical Mode Decomposition with Adaptive Noise” IEEE Int. Conf.
on Acoust., Speech and Signal Proc. ICASSP-11, (2011) 4144-4147

[R4] Z. Wu and N. Huang, “Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method”,
Advances in Adaptive Data Analysis, Vol. 1 (2009) 1-41

pyeemd Documentation, Release 1.3

10 Bibliography

Python Module Index

utils, 6

11

pyeemd Documentation, Release 1.3

12 Python Module Index

Python Module Index

utils, 6

13

pyeemd Documentation, Release 1.3

14 Python Module Index

Index

C

ceemdan() (in module pyeemd), 4

E

eemd() (in module pyeemd), 3

emd() (in module pyeemd), 4
emd_evaluate_spline() (in module pyeemd), 5
emd_find_extrema() (in module pyeemd), 5
emd_num_imfs() (in module pyeemd), 5

P

plot_imfs() (in module utils), 6

U

utils (module), 6

15

	Contents:
	Installing pyeemd
	Tutorial
	API documentation

	Indices and tables
	Bibliography
	Python Module Index
	Python Module Index

